Residential Building Analysis and Design (G+5)

U.Arun Kumar¹K.Vishnu Vardhan²K.Peeraiah³ ¹Assistant professor, deparment of civil engineering, K.S.R.M college of Engineering, Kadapa

^{2,3}PG scholar

Abstract: The structure may be planned using Autodesk Revit. Autodesk Revit is Building Information Modeling (BIM) software used by structural engineers, MEP engineers, contractors, and landscape architects. Users are able to create a 3D model of a building and all of its components, annotate that model using 2D sketching tools, and then access data stored in the database of that model. There are two apartments in the building in question. Our building has a basement and five storeys. A stairwell may be installed in the middle of two apartments. Robot Structure Analysis provides comparable capabilities to Robot Structure analysis professional by allowing you to simulate the impacts of structural loads and check for code compliance using cutting-edge BIM software. The program, which is compatible with BIM processes, is exclusive to the AEC software library.

Key words: Revit software, BIM tools, Robot Structural analysis.

1. INTRODUCTION

Due to rising land prices and population, multi-story structures have become more important in today's megacities. When it comes to housing a large population, multistory structures are the way to go. A residential structure with more than one story above ground, designed to maximize living space while minimizing footprint. Structural analysis is the study of designing and planning the construction of a sound structure. The parameters for each project are distinct, depending on factors like the incoming load, soil characteristics, dynamic load, built up area, and so on. In this article, we supplied the information necessary to potentially finish a house or apartment. We began by gathering the necessary information to determine the soil's characteristics, such as its moisture level, its bearing ability, its kind, and so on.

REVIT ARCHITECTURE

So that you may focus on your Building models rather of adjusting your workflow to meet the needs of the program, Revit Architecture is designed to be flexible with how you operate. This quick guide will teach you the ropes of using Revit Architecture for building design, alterations, and documentation. Changes to the building's design may be made from any angle thanks to parametric modeling, which you will learn about. All of the other views in Revit are updated simultaneously with the architecture.

REVIT STRUCTUIRE

To facilitate efficient design processes in a Building Information Modeling (BIM) environment or when collaborating with other Autodesk-based construction disciplines, Revit Structure is Autodesk's BIM software solution for structural engineering firms and structural engineers.

ROBOT STRUCTURAL ANALYSIS

Robot, short for Autodesk® RobotTM Structural Analysis Professional 2017, is a graphical application that may be used to model, analyze, and design many different kinds of buildings. You can use it to build things, do math, and double-check your work. In addition to designing and calculating a structure, it also allows you to produce documentation for it

2. METHODOLOGY

- a. MODELLING
 - i. (G+5) Residential building
 - ii. Creating a Project
 - iii. Adding Walls
 - iv. Adding a Curtain Wall
 - v. Adding Doors
 - vi. Adding windows
 - vii. Adding Components
 - viii. Adding Floors
 - ix. Adding Stairs
 - x. Adding Ceiling
 - xi. Adding a Roof
 - xii. Creating Toposurface
 - xiii. Adding Site Components
 - xiv. Creating a Sheet
 - xv. Adding Model Text
 - xvi. Adding Material Takeoff Scheduling
 - xvii. Add Painting
 - xviii. Camera View
 - xix. Rendering
 - xx. Walkthrough

Revit Structure:

- i. Creating a Project
- ii. Adding Grids
- iii. Adding Columns
- iv. Adding Beams
- v. Adding Footing

Structural Analysis:

- a. Creating a Project
- b. Converting Revit Model into Robot
- c. Adding Fixed support
- d. Adding Loads
- e. Wind Load Analysis
- f. Seismic load Analysis
- g. R.C.C Design
- h. RC Beam Design
- i. RC Column Design

Fig.1 Architectural floor plan of residential building.

Fig.2 architectural roof plan of residential

building

Journal of Management & Entrepreneurship ISSN 2229-5348

Fig. 3

•	Regulation of combinations	- IS:875 (Part5)
٠	Calculations according to	IS 455 2000
	Precast beam	00
	Cover	bottom c = 3.0

c1 = 3.0 (cm) c2 = 3.0 (cm) side top

2.4 Calculation results:

2.4.1 Internal forces in ULS

Reinforcement: 2.6

2.6.1 P1 : Span from 0.23 to 3.95 (m)

ngitudinal reinfor	comont:			
bottom				
3 Fe415 12	1 = 4.12	from 0.03	to	-4,15
assembling (top)				
3 Fe415 B1= 1.97	from 0.03	to 2.00		
support (Fe415)				
3 Fe415 12	1 = 2.51	from 1.64	10	4.15
insversal reinforc	ement:			
main				
	hgitudinal reinfor bottom 2 Fe415 12 assembling (top) 3 Fe415 81 = 1.97 support (Fe415) 3 Fe415 12 insversal reinforc main	Agricultual reinforcement: bottom 3 Fe41512 L=4.12 assembling (top) 3 Fe41581=1.97 fram0.03 support (Fe415) I=2.51 insversal reinforcement: main	Application Application <thapplication< th=""> Application</thapplication<>	Application Composition 3 Fe415 12 I = 4.12 from 0.03 to 3 Fe415 12 I = 4.12 from 0.03 to 3 Fe415 0 I = 1.97 from 0.03 to 2.00 3 Fe415 0 I = 1.97 from 0.03 to 2.00 3 Fe415 12 I = 2.51 from 1.84 to insversal reinforcement: main from 1.84 to

atirrups 50 Fe415 5 I = 0.75 e = 1*0.06 + 24*0.15 (m)

3 Material survey:

	Concrete vo	lume	= 0.29 (m3)
•	Formwork	= 3.54 (m2)	

- •
- Steel Fe415 Total weight = 35,32 (kG) Density = 121.25 (kG/m3) Average diameter = 9.2 (mm) Survey according to diameters:

Diameter (mm)	Length (m)	Weight (kG)	Number (No.)	Total weight (kG)
8	1.97	0.31	3	15.33
12	2.51	2.23	3	6.68
12	4 12	3 66	3	10.98

Fig.10

3. Result

0 (21)

Number: 1

Beam Design:

Level: 1

Name		

- Reference level
 Reference level
 Fire rating
 Maximum cracking 0.30 (mm)
 Environment class
- moderate + Concrete creep coefficient $\phi_p = 2.00$

2 Beam: Beam465

2.1 Material properties:

 Co Un Un 	ncrete it weight naitudina	Lieinford	M 30 2549.29	(kG/m3)	fre = 30.00 (MPa) Fe615 fv = 415.00 (MPa			
• Tra • Ad	nsversal reinforcement ditional reinforcement		ement ment	Fe415 Fe415	1.875	$f_{\rm F} = 415.00 ({\rm MPa})$ $f_{\rm F} = 415.00 ({\rm MPa})$		
2.2	Geon	netry:						
	2.2.1	Span	Position	L supp	L	R supp		
		P1 Span I Sectio	Span ength: L ₀ = 3.5 n from 0.00 to 22.9 x 30.5 (without left s without right	0.23 (m) 3.72 (m) cm) lab slab	3.72	(m) 0.23		

RC Column Design

а		Lev	el:										
			100 C										
		- Rel - Fire	erence rating dronme	level nt class				-2.0 0.05 mik	a omb 1 1				
2		Colu	imn:	Colun	nn1				Number: 1				
		2.1 Material properties:									And the second s		
		+ Concrete				M	30		fex = 30	00 (MP)	46		
	Longit Transv		t weight gitudin novenua	l. al reinforce l reinforce	icoact. Nant	$\begin{array}{ccc} 2549 & 29 & (kG/m3) \\ \mbox{Pred} 15 & \mbox{F}_{\rm F} &= 415 & \mbox{Di} \\ \mbox{F} &= 500 & \mbox{F}_{\rm F} &= 500 & \mbox{Di} \end{array}$				5 DD (MF	(MPa)) (MPa)		
		2.2	Geo	metry:									
			221 222 222 222 222 222 222 222 222 222	Rectan Height Slab thi Beam h Cover	adar L cliness reight	l.	22 = 4 = 1 = 1 = 4	9 x 30.5 i. 15 (m) i. 00 (m) i. 30 (m) i. 0 (cm)	(cm)				
	2.3	Ca	Iculat	ion opti-	:eno								
	000000N	elculat recast le-desi lendern siculat en un-swa	ions acc column gn iess tak ion met ry struct	conting to oon into ac hod	count		IS 456 no yes exact to slab	2000					
	2.4	Lo	ads:										
	Case	1	share	Ge		2141	Max	Red 1	Mail	Max	Mit	Mar	
	11.8 Yr - 104		eload	1		(MC 00 053	(kM*e) 38 -0.43	0.019mi 0.20	(MP10) -0.17	(63/7m)i 0.30	(MP40) -0.19	GANNEL IL 12	
	2.6		louist	on resu	dia -								
	6.9		na cana ca	0111000	area.								
			149d *	- 54.56 (97	0 NS	id"ellota	t = -3.48 (k(N*m)	MS	d"etotym	1.09 (14	(*m)	
.5.1.1	Ecc	entr	icity										
ocentric	ity:		1				ez (My	/N)		ey (M	z/N)		
tatic order linimal otal					ee: eac emi eto	fd in: t:	-0.5 (c) 5.9 (c) 2.2 (c) -6.4 (c)	m> 12 12 m)		0.4 (c 0.0 (c 2.0 (c 2.0 (c	m) m) m)		
5.1.2	Det	aite	d are	alvaia	Direr	tion	Y:	1980		1111396	198		
3.6	1.2	1 61	ande			uni-							
	•••		mae	11055	anar	A 010							
Non-	awa	y stri	cture	l _B (m) 6.00	10 1	.00	t _m (⊖,0	m) 0					
ley/h lez/b Silenc	= 10 = 26	26 =	12.00	ţ									
2.5.	5.1.2.2 Buckling analysis												
M2 = Case	$M2 = 0.30 \ (kN^*m) \qquad M1 = -0.64 \ (kN^*m) \ M1 = -0.26 \ (kN^*m) \ Case: Cross-section in the middle of the column, Slenderness taken into account$									ount			
M) = r emin Mmin k = 1	nax = ma = na = N	(0,4M 1× (20 30.5 'emin	1 + 0,1 imm : 1 (om) = 1,21	вм2 ; 0,- ₀ /500+h (kN*m)	4*M2) /30) =	= -0.2 2.2 (88 (kN*n om)	15	g	39.7.1) 25.4)			
M		k -	$P_{\mu}h$	(10)°									

Md = max (Mmin,Mi+May) = -3.48 (kN*m)

RESULT

- Designing using Software's like robot structural analysis and revit reduces lot of time in design work.
- Details of each and every member can be obtained using robot structural analysis.
- Accuracy is improved by using software.

Bending Moment Diagram

CONCLUSION

- We made a sincere effort to present the structural design and modelling of a school building. For the completion of our project we used REVIT SOFTWARE, ROBOT STRUCTURAL ANALYSIS.
- We planned our building according to the BUILDING BYE LAWS and PRINCIPLES OF PLANNING.
- It is a 5 storey residential building. **4. REFERENCE**

BOOK REFERENCES:

• BUILDING PLANNING AND DRAWING – DR.N. Kumara Swamy, M.E., B.E. (civil engineering), Principal. Sixth edition: 2012, CHAROTAR PUBLICATIONS.

CODAL REFERENCES:

- IS: 1893 2002
- IS: 456 2000
- IS: 875 1987
- BS: 8004 2015